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ROBUST OPTIMAL DISTURBANCE OBSERVER DESIGN FOR THE
NON-MINIMUM PHASE SYSTEM

Lu Wang and Jianbo Su

ABSTRACT

In this paper, a design strategy of robust disturbance observer is proposed systematically for stable non-minimum
phase systems. This strategy synthesizes the internal and robust stability, relative order and mixed sensitivity design
requirements together to establish the optimization function. The optimal solution is obtained by standard H∞ control
theory under the condition of guarantying the presented requirements. Simulation results of a rotary mechanical system
show the effectiveness of the proposed strategy.
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I. INTRODUCTION

In most practical industrial processes, the inevitable
system uncertainties and external disturbances will have
great influence on the performance of the control system.
The disturbance observer based (DOB) control scheme
was originally proposed by Ohnishi in 1987 [1], and it’s
effectiveness in disturbance rejections has been shown in
many applications [2–5].

The design of the Q filter is the key point of
DOB configuration, and has attracted much attention
from researchers. There have been abundant results in
using the H∞ control theory for Q filter design [6–8].
Linear matrix inequalities (LMI) or algebraic Riccati
equations were applied in [6,7] to optimize the Q filter
with static gain. The standard H∞ scheme is employed
in [8] to optimize the Q filter. However, this research
neglects the internal stability of the system, and cannot
be used directly in non-minimum phase (NMP) systems.
Since the inverse of the nominal plant is required in
DOB configuration, the internal stability problem occurs
if the nominal plant has the right-half of the s-plane
(RHP) zeros.

In this paper, the DOB configuration for an NMP
system is investigated. We first consider the internal and
robust stability, relative order, mixed sensitivity design
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requirements together to establish an optimization func-
tion. Then, the optimization problem is transformed into
a standard H∞ one, based on which the solution of the
Q filter is optimized by the existing standard H∞ control
theory. Finally, a design example is presented specifically
on a mechanical system to show the effectiveness of the
proposed strategy.

II. PROBLEM STATEMENT

The traditional control system based on DOB is
expressed in Fig. 1, where P(s) is the plant model, Pn(s)
is the nominal model and, Q(s) is the Q filter to be
designed. Ur(s),Y (s),D(s) and N(s) denote the Laplace
transformation of reference input ur, output y, external
disturbances d and measurement noise n, respectively. We
focus on the DOB configuration for stable NMP systems.
The system model P(s) is described with multiplicative
uncertainty as:

P(s) = Pn(s)(1 + Δ(s)), (1)

where P(s) and Pn(s) are all stable plants with RHP zeros.
The nominal plant Pn(s) is expressed as:

Pn(s) =
N(s)
D(s)

∏
i

(−s + 𝜉i), (2)

where Re(𝜉i) > 0, N(s) and D(s) have no root with
positive real part.
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Fig. 1. The DOB based structure.

III. ROBUST DISTURBANCE OBSERVER
DESIGN

3.1 Internal stability constraint

A control system is internally stable if bounded
signals injected at any point of the control system gen-
erate bounded responses at any other point [10]. The
internal stability is a basic requirement for a practical
closed-loop system. Here, we give the sufficient condition
of the internal stability for DOB structure.

Theorem 1. The control system described in Fig. 1 is
internally stable if the following requirements are satis-
fied:

Requirement 1. Q(s) ∈ ∞ and it can eliminate all the
RHP poles of P−1

n (s).

Requirement 2. The open-loop transfer function from Ur
to U is stable.

Requirement 3. The robust stability against the system
uncertainties should be satisfied.

Proof. The six transfer function from
[
Ur D N

]T
to

[Y U]T are given as:

1
M

[
P(s) P(s)(1 − Q(s)) −P−1

n (s)P(s)Q(s)
1 (1 − Q(s)) −P−1

n (s)Q(s)

]
, (3)

where M = 1 + P−1
n (s)P(s)Q(s) − Q(s). If all the compo-

nents of the matrix in (3) and 1
M(s)

are all in ∞, then

the transfer function from
[
Ur D N

]T
to [Y U]T is

stable, based on which we can guarantee the internal
stability.

Since P(s) and Pn(s) are with no RHP poles, if
Requirement 1 is satisfied, then we can conclude that all
components of matrix in (3) are in ∞.

Noticing that 1
M(s)

is the transfer function from Ur

to U . If the open-loop transfer function from Ur to U is
stable and the closed-loop system is robustly stable, then
the closed-loop system is input output stable with input
Ur and output U . Hence, we notice that 1

M(s)
∈ ∞

if Requirements 2 and 3 are satisfied. It is clear that the
control system described in Fig. 1 is internally stable if
Requirements 1 to 3 are satisfied.

3.2 Robust DOB design

The transfer function of the DOB structure can be
expressed as:

Y (s) =M−1(s)
[
P(s)(1 − Q(s))D(s) + P(s)Ur(s)
−P−1

n (s)P(s)Q(s)N(s)
]
.

(4)

We define a set of Q(s) as:

Ωk =

{
F(s)|F(s) = A(s)

B(s)
=

∑q
j=0 ajs

j∑p
i=0, bisi

,

aq ≠ 0, bp ≠ 0, p − q ≥ k

}
,

(5)

where k is the relative order of Pn(s), A(s) and B(s) are
coprime polynomials.

We hope the solution of the Q filter can eliminate
the disturbances as far as possible under the condition
of guarantying the requirements in Theorem 1. From
(4), the disturbance and measurement noise attenuation
problem can be regarded as selection of the tradeoff
between the sensitivity and complementary sensitivity
functions:

min
Q(s)

|W1(j𝜔)(1 − Q(j𝜔))|,min
Q(s)

|WN(j𝜔)Q(j𝜔)|, (6)

where W1 and WN are the weighting functions which
reflect the prior frequency property of the external dis-
turbances and measurement noise, respectively. Then we
analyze the robust stability of the closed-loop system.
According to the small gain theory, we get the require-
ment of robust stability as [2]:

‖Q(s)Δ(s)‖∞ < 1. (7)

With the consideration of the internal stability of
the closed-loop system, we combine the requirements
in (6) and (7) together to acquire the new optimization
function as:
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max 𝛾,

s.t. min
Q(s)∈Ωk
Q(s)∈RH∞

‖‖‖‖‖
[
𝛾W1(s)(1 − Q(s))

W2(s)Q(s)

]‖‖‖‖‖∞ < 1,
(8)

where |W2(j𝜔)| = max{|Δ(j𝜔)|, |WN(j𝜔)|},∀𝜔. |W2(j𝜔)|
should be selected as close as possible to |Δ(j𝜔)| and|WN(j𝜔)|, otherwise it will lead to the system being more
conservative.

Now, we present the optimized solution for Q fil-
ter. For the optimization problem in (8), it is very hard to
get the solution Q(s) directly. The standard H∞ control
theory is employed for this kind of optimization problem
in [8]. Defining the transfer function of the virtual loop
as: L̃(s) = Q(s)

1−Q(s)
= P̃(s)K̃(s), the Q filter design problem

becomes a standard H∞ problem as:

max 𝛾,

s.t. min
Q(s)∈Ωk
Q(s)∈RH∞

‖‖‖‖‖‖
[

𝛾W1(s)
(
I + P̃K̃

)−1

W2(s)P̃K̃
(
I + P̃K̃

)−1

]‖‖‖‖‖‖∞ < 1,
(9)

where L̃(s) = P̃(s)K̃(s) and P̃(s), K̃(s) are the virtually
controlled objective and controller, respectively.

The virtually controlled objective P̃(s) is given as:

P̃(s) = P0(s)PA(s), (10)

where P0(s) is a stable plant and W2(s)P0(s) must be
proper to guarantee the solution of the standard H∞
problem. PA(s) is an allpass portion which includes all the
RHP zeros of Pn(s):

PA(s) =
∏

i

−s + 𝜉i

s + 𝜉H
i

,Re(𝜉i) > 0, (11)

where the superscript H denotes the complex conjugate.
For a given virtually controlled objective P̃(s), if we

can acquire the optimal solution of the virtual controller
K̃(s), then we can obtain the Q filter as:

Q(s) = P̃(s)K̃(s)
1 + P̃(s)K̃(s)

. (12)

Theorem 2. The optimized Q filter has the following
properties:

1. The relative order of optimized Q(s) is higher than
or equal to that of weighting function W2(s).

2. The optimized Q(s) ∈ ∞, and it has all the RHP
zeros of Pn(s).

3. The open-loop transfer function from Ur to U
is stable.

Proof.

1. From the optimization function in Eq. (8) and
loop shaping theory, we know that ‖1 − Q(s)‖∞ <‖‖‖ 1
𝛾W1(s)

‖‖‖∞ and ‖Q(s)‖∞ <
‖‖‖ 1

W2(s)
‖‖‖∞. Then we can

obtain the following equation as:

lim
𝜔→∞

|W2( j𝜔)Q( j𝜔)| < 1, (13)

hence, the relative order of Q(s) is higher than or
equal to that of W2(s).

2. From the description of H∞ optimal control prob-
lem, we know that the closed-loop system of the
virtual H∞ control problem is internally stable, then
Q(s) = P̃(s)K̃(s)

1+P̃(s)K̃(s)
∈ ∞.

Since there is no RHP zero-pole cancellation
between virtual plant and controller, L̃(s) has all the
RHP zeros of P̃(s). Assume that L̃(s) = NL−(s)NL+(s)

DL(s)
,

and DL(s) is coprime with NL−(s)NL+(s), where
NL+(s) =

∏
i
(−s + 𝜉i),Re(𝜉i) > 0. Then, Q(s) can be

expressed as:

Q(s) =
NL−(s)NL+(s)

DL(s) + NL−(s)NL+(s)
, (14)

that is, the optimized Q(s) can eliminate all the
RHP poles of P−1

n (s).

3. The open-loop transfer function from Ur to U is
give as: GUUr

= 1
1−Q(s)

. According to Eq. (12), this

transfer function can be rewritten as: GUUr
= 1 +

P̃(s)K̃(s). Noticing the virtual plant and controller
are all stable, hence, the transfer function GUUr

is stable.

The above Theorem shows that if the weighting
functions and virtual control objective are well-selected,
the optimized Q filter satisfies the order constraint, and
can eliminate the unstable poles of P−1

n (s).

IV. APPLICATION OF MECHANICAL
SYSTEM

A rotary mechanical system is applied to ver-
ify the effectiveness of the proposed strategy. The
continuous-time plant transfer function is [11]
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P(s) = 123.853 × 104(−s + 3.5)
(s2 + 6.5s + 42.25)(s + 45)(s + 190)

. (15)

Noticing that the poles s = −45 and s = −190 are
far away from the dominant conjugate poles, we select the
nominal model as:

Pn(s) =
144.86(−s + 3)

(s2 + 6.5s + 42.25)
. (16)

To suppress the constantly external disturbances
as well as guarantee the robust stability, we select the
following weighting functions:

W1(s) =
1
s
,W2(s) =

0.2s + 3
9

. (17)

Noticing that the relative order of Pn(s) is 1, the rela-
tive order of W2(s) is chosen as 1 to make the relative
order of Q(s) higher than or at least equal to that of Pn(s).
Then, the virtual control objective and optimized virtual
controller are given as:

P̃(s) = 1
s + 1

⋅
−s + 3
s + 3

, K̃(s) = 45(s + 3)(s + 1)
s(s + 64.57)

, (18)

and the Q filter is expressed as:

Q(s) = 45(−s + 3)
s2 + 19.57s + 135

. (19)

Then, a prefilter is selected as:

s2 + 6.5s + 42.25
144.86(0.2s2 + 1.6s + 3)

. (20)

Fig. 2. Verification of robust stability condition.

Fig. 3. Step response with constant disturbances.

Fig. 2 shows the robust stability condition of the
closed-loop system with DOB. The weighting func-
tion that reflects the robust stability condition W2(s) is
well-selected. It is also verified that the optimized Q fil-
ter satisfies the robust stability condition very well. Fig. 3
shows the control performance of control system in the
presence of constant disturbance. Without DOB, there
exists steady-state error caused by external disturbances
and system uncertainties. The designed DOB can elimi-
nate the steady-state error successfully.

V. CONCLUSIONS

This paper proposes a systematic DOB design strat-
egy for stable NMP system. An optimization function is
established based on several design requirements, based
on which standard H∞ control theory is employed to
obtain the optimal solution. Simulations are carried out
on a rotary mechanical system with a RHP equal to zero.
It is verified that the proposed DOB can be employed
successfully to suppress the influence caused by distur-
bances. The robust stability is also guaranteed against
internal uncertainties.
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